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1. はじめに
ため池を含む農業水利施設に対し，大規模地震を想定した耐震性能の評価が進行中

である．大きな地震動が入力される応答解析では，材料非線形性を考慮し，残留する
塑性変形量を評価する．ここで数値計算により評価される塑性変形量は，波動解析に
不可避な波の位相誤差や振幅誤差といった，数値誤差の影響を強く受ける．さらに弾
塑性動的解析では，材料特性も時間変化する変数となり，線形弾性を仮定した解析と
は異なる誤差特性が予想される．従ってロバストかつ正確な性能評価には，これらの
誤差を小さく抑えた解析手法が求められる．本論ではこれを実現する手法の一つであ
る，一般化速度型 ST/FEM(以下 gv-ST/FEM)を弾塑性動的応答解析に拡張する．
Radau型の求積法を時間方向に採用し，一次元弾塑性動的応答解析を行った．
2. 一般化速度型 Space-Time有限要素法による定式化とRadau型求積
体積力を無視した運動方程式を支配方程式とする．gv-ST/FEMはこれを時空間

Qn := Ω× In (Ωは空間領域，In := (tn, tn+1)は時間領域) 上でこれを積分し，以下
の弱形式からなる残差式 (ρ：密度，v：速度，σ：Cauchy応力)を得る．

R :=

∫
Qn

δv · ρ∂v
∂t

dQ+

∫
Ω

δv · ρJvKdΩ+

∫
Qn

∂δv

∂x
· σdQ−

∫
P

δv · hdP = 0 (1)

ここで δvは仮想速度，JvKは時間ステップ間で生じる速度の不連続量である．また h
はトラクションであり，時空間上のノイマン境界 P に作用する．式 (1)を FEMによ
る離散化し，Newton-Raphson法を適用すると以下の反復アルゴリズムを得る．

K(V(k−1)) ·∆V(k) = −R(k−1) = −MV(k−1) − Fint(Σ
(k−1)) + Fext

V(k) = V(k−1) +∆V(k); ∆Uh(k)(t) =

∫ t

tn

V(k)dt
(2)

ここで kは反復回数，Kは接線剛性マトリックス，∆Vは速度増分ベクトルである．
Rは式 (1)に相当する残差ベクトルであり，質量マトリックスMと節点速度ベクト
ルV，内力Fint 及び外力ベクトルFextからなる．内力ベクトルを構成するΣは，数
値積分点における応力値であり，Return-Mapping法を通して反復毎に降伏局面上に
戻される．その際，時刻 tでの弾性予測値 Σpre は，速度の厳密な時間積分により得
られる変位増分ベクトル∆Uh(t)を用いて次式で計算される.

Σpre (t) = Σtn + E
∂∆Uh (t)

∂x
(3)

ここで Σtn は前時間ステップ終了時の応力値，E はヤング率，また時間ステップ終
了時刻 tn+1 でのつり合いを保証するため，gv-ST/FEMによる弾塑性解析では，時
間方向に Radau型求積と呼ばれる端点を含む数値積分法を使用する．具体的には 2
点右 Radau積分 (局所座標の積分点は−1/3,+1)を採用した．
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3. 線形ひずみ硬化体に対する弾塑性動的応答問題
線形ひずみ硬化体からなる一次元梁の動的応答解析を行った．長さ 50 mを，500

の線形空間要素数で表現し，左端を固定，右端に 0.005秒間，1 MPaの圧縮力を与え
た．ρ = 2500 kg/m3，E = 10 MPa，初期降伏応力は 900 kPaとした．
図 1は塑性係数K = 1.0 GPaとした際の結果である．従来法 (FEMとNewmark-

β 法)でも解析を行い，異なる時間ステップ幅 ∆tによる数値解で比較する．図より
gv-ST/FEMは数値振動が Newmark-β 法に比べ非常に少なく，どの∆tを用いた時
でも同様な波形を示し，安定的な計算が実現されている．さらに相当塑性ひずみは
Newmark-β法の結果が∆tに依存して大きく変化し，最大塑性ひずみや，塑性ひずみ
が確認される範囲の増大が確認できる．その一方 gv-ST/FEMではどの時間ステッ
プ幅を用いた場合にも厳密解とよく一致し，塑性変形量が高精度に評価されている．
次に塑性係数K を 1.0 GPa，100 MPa，10 MPa，0.0 Paとした際の gv-ST/FEM

による数値解を図 2に示す．塑性係数の減少に伴ない，波形は最大応力を初期降伏応
力とする長方形パルスに近づく．これは塑性波の速度が弾性波速度 (2000 m/s)と比
較して，非常に小さくなることに起因する．大きく伝播速度が異なる波の同時解析は
数値的な不安定性を招きやすい．弾完全塑性 (K = 0)の場合には少し数値振動が目
立つが，gv-ST/FEMはどの塑性係数でも安定した計算が実現できている．

図 1 異なる ∆tを用いた際の応力波 (右)と相当塑性ひずみ (左)の比較 (K = 10 GPa, t = 0.018 s)

Fig.1 Comparisons of stress and equivalent plastic strain with different ∆t

図 2 異なる塑性係数K を設定した際の応力波の比較 (t = 0.02 s)

Fig.2 Comparisons of stress with different plastic modulus K
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